Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB.

نویسندگان

  • Vera M Ripoll
  • Nicholas A Meadows
  • Liza-Jane Raggatt
  • Ming K Chang
  • Allison R Pettit
  • Alan I Cassady
  • David A Hume
چکیده

Microphthalmia transcription factor (MITF) regulates bone homeostasis by inducing expression of critical genes associated with osteoclast function. Gpnmb is a macrophage-enriched gene that has also been shown to be expressed in osteoblasts. Here, we have shown gpnmb to be highly induced in maturing murine osteoclasts. Microarray expression profile analysis identified gpnmb as a potential target of MITF in RAW264.7 cells, subclone C4 (RAW/C4), that overexpress this transcription factor. Electrophoretic mobility shift assays identified a MITF-binding site (M-box) in the gpnmb promoter that is conserved in different mammalian species. Anti-MITF antibody supershifted the DNA-MITF complex for the promoter site while MITF binding was abolished by mutation of this site. The gpnmb promoter was transactivated by co-expression of MITF in reporter gene assays while mutation of the gpnmb M-box prevented MITF transactivation. The induction of gpnmb expression during osteoclastogenesis was shown to exhibit similar kinetics to the known MITF targets, acp5 and clcn7. GPNMB expressed in RAW/C4 cells exhibited distinct subcellular distribution at different stages of osteoclast differentiation. At days 5 and 7, GPNMB protein co-localised with the osteoclast/macrophage lysosomal/endocytic marker MAC-3/LAMP-2, suggesting that GPNMB resides in the endocytic pathway of mature macrophages and is possibly targeted to the plasma membrane of bone-resorbing osteoclasts. The inclusion of gpnmb in the MITF regulon suggests a role for GPNMB in mature osteoclast function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Phosphatase Activity Follows Decline in Sulfatase Activity and Leads to Transcriptional Effects through Sustained Phosphorylation of Transcription Factor MITF

Arylsulfatase B (B-acetylgalactosamine 4-sulfatase; ARSB) is the enzyme that removes 4-sulfate groups from the non-reducing end of the glycosaminoglycans chondroitin 4-sulfate and dermatan sulfate. Decline in ARSB has been shown in malignant prostate, colonic, and mammary cells and tissues, and decline in ARSB leads to transcriptional events mediated by galectin-3 with AP-1 and Sp1. Increased m...

متن کامل

PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts.

Cytokine signaling via various transcription factors regulates receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-mediated osteoclast differentiation from monocyte/macrophage lineage cells involved in propagation and resolution of inflammatory bone destruction. Protein inhibitor of activated STAT3 (PIAS3) was initially identified as a molecule that inhibits DNA binding of STAT3 and...

متن کامل

Endothelin-1 enhances the melanogenesis via MITF-GPNMB pathway

Endothelin-1 (ET-1) plays an indispensable role in epidermal pigmentation in hyperpigmentary disorders due to a central role in melanogenesis. Nevertheless, precise mechanism involved in ET-1-induced hyperpigmentation is still undefined. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB) is a key element in melanosome formation. Therefore, we speculated that GPNMB was correl...

متن کامل

MafB negatively regulates RANKL-mediated osteoclast differentiation.

Receptor activator of nuclear factor kappaB ligand (RANKL) induces osteoclast formation from hematopoietic cells via regulation of various transcription factors. Here, we show that MafB negatively regulates RANKL-induced osteoclast differentiation. Expression levels of MafB are significantly reduced by RANKL during osteoclastogenesis. Overexpression of MafB in bone marrow-derived monocyte/macro...

متن کامل

Silencing of GPNMB by siRNA Inhibits the Formation of Melanosomes in Melanocytes in a MITF-Independent Fashion

BACKGROUND Melanosomes are specialized membrane-surrounded organelles, which are involved in the synthesis, storage and transport of melanin. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB), a melanosome-specific structural protein, shares significant amino acid sequence homology with Pmel-17. Proteomic analysis demonstrated that GPNMB is present in all stages (I-IV) of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gene

دوره 413 1-2  شماره 

صفحات  -

تاریخ انتشار 2008